Watching the world from space

Posted by Christine, August 5, 2013

Written by Neely Tucker

Published: July 31 Updated: Thursday, August 1, 5:00 AM

 

Somewhere in the South Pacific, thousands of miles from the nearest landfall, there is a fishing ship. Let’s say you’re on it. Go onto the open deck, scream, jump around naked, fire a machine gun into the air — who will ever know? You are about as far from anyone as it is possible to be.

But you know what you should do? You should look up and wave.

Because 438 miles above you, moving at 17,000 miles per hour, a polar-orbiting satellite is taking your photograph. A man named John Amos is looking at you. He knows the name and size of your ship, how fast you’re moving and, perhaps, if you’re dangling a line in the water, what type of fish you’re catching.

Sheesh, you’re thinking, Amos must be some sort of highly placed international official in maritime law. … Nah.

He’s a 50-year-old geologist who heads a tiny nonprofit called SkyTruth in tiny Shepherdstown, W.Va., year-round population, 805.

Amos is looking at these ships to monitor illegal fishing in Chilean waters. He’s doing it from a quiet, shaded street, populated mostly with old houses, where the main noises are (a) birds and (b) the occasional passing car. His office, in a one-story building, shares a toilet with a knitting shop.

For a story about the historic hotline that still links the United States and Russia, as well as Dining, Date Lab and more, visit WP Magazine. For a story about the historic hotline that still links the United States and Russia, as well as Dining, Date Lab and more, visit WP Magazine.

With a couple of clicks on the keyboard, Amos switches his view from the South Pacific to Tioga County, Pa., where SkyTruth is cataloguing, with a God’s-eye view, the number and size of fracking operations. Then it’s over to Appalachia for a 40-year history of what mountaintop-removal mining has wrought, all through aerial and satellite imagery, 59 counties covering four states.

“You can track anything in the world from anywhere in the world,” Amos is saying, a smile coming into his voice. “That’s the real revolution.”

Amos is, by many accounts, reshaping the postmodern environmental movement. He is among the first, if not the only, scientist to take the staggering array of satellite data that have accumulated over 40 years, turn it into maps with overlays of radar or aerial flyovers, then fan it out to environmental agencies, conservation nonprofit groups and grass-roots activists. This arms the little guys with the best data they’ve ever had to challenge oil, gas, mining and fishing corporations over how they’re changing the planet.

His satellite analysis of the gulf oil spill in 2010, posted on SkyTruth’s Web site, almost single-handedly forced BP and the U.S. government to acknowledge that the spill was far worse than either was saying.

He was the first to document how many Appalachian mountains have been decapitated in mining operations (about 500) because no state or government organization had ever bothered to find out, and no one else had, either. His work was used in the Environmental Protection Agency’s rare decision to block a major new mine in West Virginia, a decision still working its way through the courts.

SkyTruth members, from left, David Manthos, John Amos and Paul Woods huddle around their computers during a meeting at Mellow Moods Cafe in Shepherdstown, W.Va., in April. SkyTruth members, from left, David Manthos, John Amos and Paul Woods huddle around their computers during a meeting at Mellow Moods Cafe in Shepherdstown, W.Va., in April. (Mike Morgan/FOR THE WASHINGTON POST)

“John’s work is absolutely cutting-edge,” says Kert Davies, research director of Greenpeace. “No one else in the nonprofit world is watching the horizon, looking for how to use satellite imagery and innovative new technology.”

“I can’t think of anyone else who’s doing what John is,” says Peter Aengst, regional director for the Wilderness Society’s Northern Rockies office.

Amos’s complex maps “visualize what can’t be seen with the human eye — the big-picture, long-term impact of environment damage,” says Linda Baker, executive director of the Upper Green River Alliance, an activist group in Wyoming that has used his work to illustrate the growth of oil drilling.

This distribution of satellite imagery is part of a vast, unparalleled democratization of humanity’s view of the world, an event not unlike cartography in the age of Magellan, the unknowable globe suddenly brought small.

Satellite imagery has “revolutionized the whole way we analyze things; it’s transformed the way the Earth is pictured.” author James B. Campbell

With Google Earth, any bozo can zoom in from a view of the globe to their house, the car in the driveway. Google and Time magazine recently developed Timelapse, a Web site that lets viewers pick a location and see a time-lapse video of how it has developed over 30 years. Last year a German enthusiast put together a stunning time-lapse video of the world at night, with images taken from the international space station.

“It’s revolutionized the whole way we analyze things; it’s transformed the way the Earth is pictured,” says James B. Campbell, author of the collegiate textbook “Introduction to Remote Sensing” and professor of geography at Virginia Tech, speaking of satellite imagery in general and Amos’s work in particular. “You can see the growth of cities, the growth of irrigation systems, agricultural patterns, the way we use water resources and transportation systems, the tremendous growth in the amount of land we’ve paved over and devoted to roads and parking lots and airport runways.”

The world, and what we’ve done to it. Do we really want to look?

Let’s go back to that fishing ship in the Pacific: How does Amos know so much about fishing ships, anyway?

First, the basics: Chilean officials wanted to know if they had an illegal fishing problem off Easter Island, their territory 2,000 miles off their coast. Chile was working with the Pew Charitable Trusts on the issue; the Trusts hired SkyTruth to figure it out.

The problem: These waters are one of the most remote places on Earth and cover 270,000 square miles.

Amos began by going small: What would fishermen be after? Tuna and swordfish, it turned out. They were fished in certain seasons, and that narrowed both the type of ships he was looking for and when.

Next, Amos started buying Automatic Identification System data. AIS is sort of like air-traffic control on the high seas: Ships send radio signals with the ship’s name, size, speed and ownership, little identifying radar blips. But that didn’t quite solve the problem: Fishing vessels are exempt from having to use AIS transponders, since captains don’t want competitors to know where they’re fishing.

Still, Amos used AIS as a screen to identify most ships passing through Easter Island’s no-fishing area, and this formed his first layer of data.

 

Satellite imagery shows the extent of tar sands mining in Alberta, Canada, as of 1999, relative to the area of Washington, D.C.

Satellite imagery shows the extent of tar sands mining in Alberta, Canada, as of 1999, relative to the area of Washington, D.C. (COURTESY OF SKYTRUTH)

 

Cumulative oil slick “footprint” in the Timor Sea as of Oct. 21, 2009, based on SkyTruth analysis of satellite imagery.

Cumulative oil slick “footprint” in the Timor Sea as of Oct. 21, 2009, based on SkyTruth analysis of satellite imagery. (COURTESY OF SKYTRUTH)

Next, he hired a multinational satellite operation (Canadian-built, Norwegian-operated) to take radar images. Although each image covered an area of 115 miles by 115 miles, the region was so vastAmos needed strips of images to create a composite. This meant the satellite had to take a sequence of photographs. It took nine sequenced images: three strips of three images, taken from three orbits of Earth, at about $5,000 per image.

Now he had a map of ships in the area on a specific day and time, and this formed his second level of data.

He then matched the days and times of both maps — the AIS information and the radar images — and laid one over the other. Here’s a freighter loaded with cars, steaming from South Africa to Japan, check. There’s an international cruise ship, check.

But the radar map also showed other ships, ones with no transponders. Since they were in protected waters during fishing season, they were highly suspicious, some making the telltale back-and-forth patterns of trawling nets.

“If the ship is big enough for us to detect on a satellite image, and they’re not broadcasting, we’re pretty sure it’s a fishing vessel,” he says, acknowledging it could be even more serious illegal activity, such as human trafficking or drug running.

There — unidentified ships in the South Pacific, running without transponders — spotted from 5,000 miles away by a couple of guys looking at computer screens in a tiny office just a couple of blocks from the Blue Moon Cafe over on High Street.

Read the rest here.